Effective Siegel’s Theorem for Modular Curves

نویسندگان

  • Yuri Bilu
  • Marco Illengo
چکیده

We prove that integral points can be effectively determined on all but finitely many modular curves, and on all but one modular curve of prime power level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Curves Seminar: Siegel’s Theorem

1.1. Statement of theorems. Siegel’s theorem, in its simplest form, is the fact that a nonsingular elliptic curve contains only finitely many integer-valued points. All versions of this result rely on theorems (of varying strength) in diophantine approximation; thus, in section 1.3, we will sketch a proof of Roth’s Theorem, which is the strongest such result that will be needed. We will then pr...

متن کامل

Cm Number Fields and Modular Forms

x∂F⊂a⊂OF (Na)k−1. Here the superscript ‘+′ stands for totally positive elements. Siegel further derived from this a simpler proof of his famous theorem that ζF (1− k) is rational for all k ≥ 1. Siegel’s construction is based on the simple observation that a Hilbert modular form becomes an elliptic modular form when restricting diagonally to the upper half plane. Indeed, Hecke constructed and pr...

متن کامل

Fixed point theorem for non-self mappings and its applications in the modular ‎space

‎In this paper, based on [A. Razani, V. Rako$check{c}$evi$acute{c}$ and Z. Goodarzi, Nonself mappings in modular spaces and common fixed point theorems, Cent. Eur. J. Math. 2 (2010) 357-366.] a fixed point theorem for non-self contraction mapping $T$ in the modular space $X_rho$ is presented. Moreover, we study a new version of Krasnoseleskii's fixed point theorem for $S+T$, where $T$ is a cont...

متن کامل

On Siegel’s Modular Curve of Level 5 and the Class Number One Problem

Another derivation of an explicit parametrisation of Siegel’s modular curve of level 5 is obtained with applications to the class number one problem.

متن کامل

Quadratic Minima and Modular Forms Ii

Carl Ludwig Siegel showed in [Siegel 1969] (English translation, [Siegel 1980]) that the constant terms of certain level one negative-weight modular forms Th are non-vanishing (“ Satz 2 ”), and that this implies an upper bound on the least positive exponent of a non-zero Fourier coefficient for any level one entire modular form of weight h with a non-zero constant term. Level one theta function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009